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INFRARED ALGORITHM DEVELOPMENT FOR OCEAN OBSERVATIONS
 WITH EOS/MODIS

Abstract

Efforts continue under this contract to develop algorithms for the computation of sea surface
temperature (SST) from MODIS infrared measurements.  This effort includes radiative transfer
modeling, comparison of in situ and satellite observations, development and evaluation of
processing and networking methodologies for algorithm computation and data accession,
evaluation of surface validation approaches for IR radiances, development of experimental
instrumentation, and participation in MODIS (project) related activities.  Activities  in this contract
period have focused on radiative transfer modeling, evaluation of atmospheric correction
methodologies, undertake field campaigns, analysis of field data, and participation in MODIS
meetings.

MODIS INFRARED ALGORITHM DEVELOPMENT

A. Near Term Objectives

A.1. Continue algorithmic development efforts based on experimental match-up databases and
radiative transfer models.

A.2. Continue interaction with the MODIS Instrument Team through meetings and electronic
communications, and provide support for MCST pre-launch calibration activities.

A.3 Continue evaluation of different approaches for global SST data assimilation and work on
statistically based objective analysis approaches.

A.4 Continue evaluation of high-speed network interconnection technologies.

A.5 Continue development of in situ  validation approaches for the MODIS IR bands.

A.6 Provide investigator and staff support for the preceding items.



B. Overview of Current Progress

B.1 July-December 1997

Activities during the past six months have continued on the previously initiated tasks.  There have
been specific continuing efforts in the areas of (a) radiative transfer modeling, (b) continued work
on IR calibration/validation as part of the MODIS Ocean Science Team cruise effort, (c) analysis of
consequences of imperfect pre-launch characterization of the MODIS infrared channels, and (d) test
and evaluation of an experimental wide area network based on ATM technology.  In addition,
previously initiated activities such as team related activities continue.

Special foci during this six month period have been:
1) Radiative transfer modeling to refine the at-launch SST algorithm..
2) Continue analysis of measurements from the DOE/NOAA/NASA ARM Combined

Sensor Project cruise in the Tropical Western Pacific in the spring of 1996.
3) Construction of a marine FTIR instrumentation for cal/val applications by UW/SSEC

via subcontract .
4) Pathfinder in a research cruise in the Pacific Ocean on the R/V Roger Revelle.
5) Participation in the ‘CASOTS’ Workshop.
6) Negotiate for ship-time for post-launch validation, and explore options for long-term

validation from fixed platforms.
7) Wide area networking

B.1.1 Radiative Transfer Modeling

As described in the SST ATBD, the MODIS SST retrieval algorithm will be built on the form
found to be very successful in the NASA/NOAA AVHRR Pathfinder program.  This is based on
the AVHRR “split-window” channels with wavelengths corresponding to ~10.5 and 11.5µm. 
Although the form of the MODIS algorithm is the same as that for the AVHRR, the coefficients
must be refined to match the spectral characteristics and NE∆L’s of the MODIS bands (31 and 32).

The RAL (Rutherford Appleton Laboratory) line-by-line radiative transfer model was used with a
global dataset of 1200 quality-controlled radiosondes over 5 zenith angles and 5 atmosphere-
surface temperature differences to generate a database of 30000 brightness temperatures in each of
MODIS bands 31 and 32. Colleagues at RSMAS have developed the Miami Pathfinder SST
(mpfsst) algorithm, which is the basis for the MODIS V.2 pre-launch SST algorithm:

modis_sst = (( c2 * T31  ) + ( c3 * T3132 ) + ( c4 * secterm ) + c1 )

secterm = (( 1 / ( cos (( satz * pi ) / 180 ))) - 1 ) * T3132

T30  is the band 31 brightness temperature (BT). (Comparable to AVHRR Channel 4)
T3031 is (Band32 - Band31) BT difference (Comparable to AVHRR (Channel 4 - Channel 5)).

The algorithm differentiates atmospheric vapor load using the difference between the brightness
temperatures (T3132) for the 11 and 12 micron bands (MODIS bands 31 and 32).  Coefficients are
determined for T3132 greater or less than 0.7oC. In application, the coefficients are then weighted by
measured T3132.

The 30000 point database was run through a robust regression to fit the modis_sst.  Data are
weighted according to the residuals, discarding data more than one Standard Deviation from the
basic regression.  A subsequent regression derives the coefficients.  Residuals of that regression
increased notably for Arctic and Antarctic terrestrial stations with surface temperatures below -2oC,
which would be unrealistic temperatures for marine atmospheres.  Excluding those extremely cold



data, the series of regressions were re-run.  MODIS V.2 pre-launch modis_sst coefficients were
delivered with a predicted RMS error of 0.337K about zero mean error.

At-Launch Coefficients
T30  - T31  <= 0.7 T30  - T31  > 0.7

c1 1.228552 1.692521
c2 0.9576555 0.9558419
c3 0.1182196 0.0873754
c4 1.774631 1.199584

While the radiosonde database was somewhat biased toward warmer SST's and clearer
atmospheres, this bias was reduced by the statistics-based rejection of outliers. The plot of
modeled band 31 vs. band 32 resembles the distribution of previously collected Pathfinder data.
Residuals showed no major trend vs. zenith angle or SST. Residuals are greatest at high latitudes.

Figure 1.  The modeled brightness-temperature database, filtered to remove surface temperatures
below -2oC, is show fairly uniform distribution versus surface temperature.

Figure 2.  The modeled brightness-temperature database, filtered to remove surface temperatures
below -2oC, is show fairly uniform distribution versus atmospheric clarity, represented
as fraction of surface-leaving irradiance divided by total satellite-viewed irradiance in
band 31.
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Figure 3.  Modeled modeled brightness-temperatures for band 31 (11 µm window) versus band 32
(12 µm window) shows a spreading of values above 15oC, which is typical of measured
Pathfinder data.

Figure 4.  Residuals from the least-squares regression for the MODIS V.2 pre-launch algorithm
show no major trends versus satellite zenith angle.  (Surface temperatures > -2oC)
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Figure 5.  Residuals from the least-squares regression fit for the MODIS V.2 pre-launch algorithm
show no major trends versus SST, with T3132 greater or less than 0.7oC.  (Surface
temperatures > -2oC)



Figure 6.  Residuals from the least-squares regression for the MODIS V.2 pre-launch algorithm are
greatest at high latitudes.  (Surface temperatures > -2oC)

B.1.2 The Combined Sensor Cruise of the NOAA ship Discoverer

As described in earlier reports, the Combined Sensor Cruise in the Tropical Western Pacific in
March–April 1996, generated an unprecedented array of measurements of atmospheric boundary
layer and sea surface temperature.

Attention has been focused on the quality assurance of the prototype M–AERI skin SST retrievals
to generate a final, clean time series.  Jennifer Hanafin (graduate student) visited SSEC, University
of Wisconsin - Madison, to work on the identification of suspect retrievals.  The final data set has
subsequently been released.  Peter Minnett presented an invited paper on these measurements at the
AGU Fall Meeting in San Francisco.

B.1.3 M-AERI

The M–AERI–01 was delivered to RSMAS in April and was set up to run  in the lab. The control
computer was put on to the RSMAS network to allow the specialists at SSEC to monitor the state
of the instrument.  The only cause for concern was instabilities in the current being drawn by the
Stirling cycle cooler, which chills the detectors to ~78oK.  This behavior has not been seen in other
coolers, but does not appear to cause fluctuations in the detector temperature.  The M–AERI–01
functioned well in the lab until it was shipped to Hawaii for the R/V Revelle cruise.

M–AERI–02 was delivered at the start of the cruise of the R/V Roger Revelle in late September.  It



was installed on the ship next to M–AERI–01 and both instruments functioned well during the
cruise (see below).

B.1.4 R/V Revelle Cruise

B.1.4.1    Introduction    

The cruise of the R/V Revelle from Hawaii to New Zealand presented us with the opportunity to
test the use of Marine Atmosphere Emitted Radiance Interferometers (M–AERI’s) in a realistic
environment prior to their use in the post–launch validation of the infrared bands of MODIS

Two M–AERI’s were operated side-by-side with the objective of comparing co-located skin
temperature measurements from two independently calibrated instruments, test different sampling
strategies by varying integration times and scan mirror sequences on one while maintaining a
‘default’ scheme on the other, and to provide redundancy should one M–AERI fail during the
cruise.

Additional instruments were also deployed on the ship to characterize the conditions under which
the skin temperature measurements were taken.

B.1.4.2     Cruise        Details   

The original cruise plan included a series of stations along the way to collect geological samples
from the ocean floor, but these plans were subsequently abandoned.  The result being that the
cruise was several days shorter than initially expected.  Apart from reducing the total number of
days during which we could collect data this revision to the cruise plans did not adversely affect
our activities.

The ship sailed from the University of Hawaii Marine Facility in Honolulu on September 28 at
about 4:30 p.m. local time, and arrived at Lyttleton at about 8:00 a.m. local time, on October 13,
after a transit made at speeds in the 10-12 knot (5-6 ms-1) range.  The cruise track crosses both
northern and southern hemisphere trade wind zones, the Equatorial region including the inter-
tropical convergence Zone, and the westerlies (‘roaring forties’) of the southern hemisphere.  The
ship’s track is shown in Figure 7.

Details of the ship itself can be found on the WWW at the URL:
http://sio.ucsd.edu/supp_groups/shipsked/revelle

B.1.4.3    Instrument        Deployed    

A brief summary of the instruments used during the cruise is given in Table 1.  The positions on
the ship at which the instruments were deployed around the ship are shown in Figure 8.

The two M–AERI’s were mounted on the starboard side on the 02 deck, with M–AERI-01 being
forward of M–AERI-02.  Both were mounted high enough so that they viewed undisturbed water,
ahead of the ship’s bow-wave with a view angle of 45o and greater (measured from nadir).  The
cables were run along the exterior of the ship into the main scientific laboratory two decks lower. 
The prevailing winds throughout the cruise, with the exception of the southern hemisphere
westerlies, were from the port side of the ship and the M–AERI’s were in the lee of a crane on the
02 deck.  During strong wind conditions when the risk of salt spray entering the instruments was
high, and during heavy rain, the M–AERI’s were covered by tarpaulin sheets for protection, and
no data were collected.  Similarly, when there was evidence of direct sunlight entering the aperture,
a shield was used which obscured some of the environmental views at the affected mirror angles. 
Otherwise, the instruments were run around the clock.



Figure 7.  Track of the R/V Revelle

A meteorological station was mounted on the forward rail of the 02 deck.  This measured relative
wind speed and direction, air temperature and humidity, and hemispheric downwelling short (0.28
to 2.8µm) and longwave (3 to 50µm) radiation.  These radiometers were mounted on gimballs to
reduce the effects of ships’ motion, and more importantly, mean tilts.



Figure 8.  Schematic diagram showing the placement of instruments on the R/V Revelle.

Table 1. Measurements  taken during the cruise of the R/V Revelle

Variable Sensor Comments

Skin Sea Surface Temperature M-AERI Continuous measurements
Skin Ice Surface Temperature M-AERI Continuous measurements
Infrared spectra of surface
emitted radiation

M-AERI Continuous measurements over
range of angles.  Pitch and roll
measured to monitor ship’s motion

Broad band LW↓ & LW↑ Heimann IRT, δλ= 9.6-11.5µm Continuous measurements
Bulk SST Ship’s thermo-salinograph Continuous measurements
Air Temperature Thermistor Continuous measurements
Relative humidity Vaisala “Humicap” Continuous measurements
Wind speed R. M. Young anemometer Continuous measurements
Wind direction R. M. Young anemometer Continuous measurements
Barometric pressure Digital barometer Continuous measurements
Insolation (SW↓) Eppley pyrometer Continuous measurements

Sensors grimballed to compensate
for ship’s motion.

Incident thermal radiation
(LW↓)

Eppley pyrgeometer Continuous measurements
Sensors grimballed to compensate
for ship’s motion.

Cloud type and cover All-sky camera Continuous measurements
Atmospheric humidity profiles Radiosondes Few per day
Atmospheric temperature
profiles

Radiosondes Few per day



Figure 9.  Latitudinal section of surface temperature measured at 5m depth (bulk) shown as black, 
and by the M-AERI (skin) color coded according to the time of measurement from
Hawaii to New Zealand (top).  The difference between the skin and bulk temperatures is
shown in the middle panel with the color code showing time.  Wind speed, corrected for
the effects of ship motion, is shown in the lower panel using the same color coding.

The Heimann Infrared Radiation Thermometers (IRTS) were mounted close to the M–AERI’s and
viewed the sea surface (ahead of the bow wave) at 55o to zenith.  They were sampled at 0.1 Hz
throughout the cruise to provide higher frequency measurements of the emitted radiance from the
sea surface and stay in the 10.6 to 11.5µm wavelength interval.

An all-sky camera was mounted on the 02 deck aft of the bridge.  This is a TV camera, mounted
looking down on a hemispheric mirror which provides a view of the dome of the sky, connected to
a time-lapse video recorder programmed to capture one frame every 17 seconds.  This provides a
record of the cloud conditions under which the measurements were taken.  This is important as part
of the radiance measured in the direction of the sea surface by the M–AERIs and IRTS is reflected
radiation having its origin in the sky.  In cases of broken cloud the sky radiance correction may be
imperfect if the cloud conditions change between the sky and sea measurements.

Radiosondes were launched throughout the cruise from the fantail of the ship to provide
measurements of the temperature and humidity profiles.  These measurements will be used with a



numerical radiative transfer model to determine the effects of the atmosphere on co-located infrared
measurements from satellite radiometers (see below).  The details of the radiosonde launches are
given in Table 2.

Table 2:  Radiosondes launched during the R/V Revelle cruise.

Date Time
(UTC) Latitude N Longitude E Comments

1 October 97 20:15 8.67 -162.90 Failed at 879 hPa
1 October 97 20:40 8.59 -162.97 Reached 95 hPa
2 October 97 21:25 4.10 -164.50 Reached 95 hPa
3 October 97 01:43 3.39 -164.79 Reached 38 hPa
4 October 97 00:24 -1.35 -166.43 Data capture failed
4 October 97 02:25 -1.50 -166.50 Reached 30 hPa
5 October 97 02:48 -6.66 -168.31 Reached 35 hPa
6 October 97 03:15 -11.71 -170.09 Reached 39 hPa
7 October 97 00:49 -15.58 -171.58 Reached 40 hPa
7 October 97 21:48 -19.72 -172.35 Reached 36 hPa
8 October 97 02:40 -20.60 -172.70 Reached 35 hPa
8 October 97 21:20 -24.26 -174.28 Reached 28 hPa
9 October 97 01:03 -24.90 -174.44 Reached 32 hPa
9 October 97 21:00 -29.30 -175.60 Reached 49 hPa
10 October 97 01:24 -29.85 -175.75 Reached 29 hPa
10 October 97 21:58 -34.00 -177.20 Reached 39 hPa
11 October 97 02:05 -34.80 -177.42 Reached 35 hPa
11 October 97 05:59 -35.39 -177.97 Reached 31 hPa
11 October 97 21:01 -37.48 180.00 Reached 39 hPa
11 October 97 23:19 -38.15 179.70 Reached 32 hPa
12 October 97 02:23 -38.50 179.30 Reached 32 hPa
12 October 97 04:37 -39.95 178.98 Reached 35 hPa
12 October 97 07:11 -39.31 178.60 Reached 46 hPa

Measurements of the bulk temperature of the near-surface layer of the ocean were provided by the
ship’s thermosalinograph system, mounted in the bow-thruster intake at a depth of about 5m.  The
system was calibrated in July 1997, and the absolute accuracy should be better than ±0.01K. 
These provide the in-situ measurements against which the M–AERI skin temperature
measurements can be compared.

The ship’s position was recorded using GPS in each of the M–AERI data streams, and also by the
ship’s navigation system, which also provides measurements of ship’s speed and course at 15
second intervals.

B.1.4.4     Satellite        Data   

The M–AERI skin temperatures will be compared with measurements from several infrared
radiometers on spacecraft.  These include the AVHRR (Advanced Very High Resolution
Radiometer) on the NOAA polar-orbiting satellites, the ATSR-2 (Along Track Scanning
Radiometer) on the European ERS-2, and the VISSR (Visible Infrared Spin-Scan Radiometer) on
the Japanese geostationary meteorological satellite (GMS).  The AVHRR data have been extracted
from the Global Area Coverage (4km resolution) at RSMAS and 1km data have been requested
from the New Zealand Meteorological Service.  ATSR data have been requested from the ATSR



project in the UK.  The GMS data are available through Minnett’s activities in the DOE ARM
(Atmospheric Radiation Measurements) program.

B.1.4.5      M–AERI        Sampling        Strategies   

The M–AERI scan mirror is now under the control of the system’s computer and a series of mirror
possibilities are programmed which are repeated continuously.  At the start of each new (UTC) day
the system computer reboots itself and clears any incomplete or damaged files resulting from
pathological situations.  It also determines that enough free disc space exists for the data from the
forthcoming day:  if not old data files are deleted until enough free space exists.  It is presumed that
the deleted files will have already been archived to other storage media.

The default sequence of mirror positions are given in Table 3.  This sequence was used on the M–
AERI-01 throughout the cruise and forms a bench-mark for the alternative schemes that were tried
on M–AERI-02.

The number of interferograms averaged is determined by the need to reduce the NE∆T of the
detector noise in the spectra to <<0.1K (actually ~0.03K).  More are needed for the sky view to
ensure that the measurements taken in the most transmissive part of the spectra (and therefore lead
to very cold temperatures) are not dominated by detector noise.  The skin surface temperatures are
derived from the 55o measurements, as these are close to the Brewster angle at which the
reflectivity of the ocean is at a minimum and the contribution to the measurement of reflected sky
radiation is therefore least.  The 75o measurements are used to retrieve air temperatures close to the
sea surface.  This sequence takes about 20 minutes to complete (2.82 per hour); skin SST and air
temperature are retrieved once per sequence.

The detectors on M–AERI-02 have much lower noise levels than those of M–AERI--01, and the
number of interferograms averaged per mirror position was reduced without drastic loss of signal-
to-noise ratio.  By averaging 12 interferograms on all but the sky view at zenith (46) the sequence
time was reduced to 7.3 minutes (8.2 per hour).  Further reductions are feasible in principle, but in
reality it was found that the control software was crashing for faster sequences.  Also the full
benefit of shorter averaging times was not being realized as there appears to be more software
‘overhead’ than can be accommodated in the mirror movement intervals.

The two M–AERI system computers were attached to the ship’s LAN and the M–AERI data were
copied onto disks on the ship’s computer system before archiving on 4mm DAT tapes (2 copies). 
Critical data files were also copied onto the hard drive of a laptop PC (also attached to the ship’s
LAN) and an additional copy made on an external disk drive.

Table 3 - Mirror Position Sequence

View Angle, relative
to Zenith

Number of
Interferograms

Hot calibration target 60o 46

Ambient temperature target 120o 46

Sky view 0o 90

Sea view (45o) 225o 46

Sky view (45o) 315o 46

Sea view (55o) 235o 46

Sky view (55o) 305o 46



View Angle, relative
to Zenith

Number of
Interferograms

Sea view (75o) 255o 46

Sky view (75o) 285o 46

Repeat Sequence

B.1.4.6     Preliminary        Results   

The skin sea surface temperatures are retrieved from the 55o sea and sky view data using
measurements in a narrow spectral interval at 7.7µm, where the atmosphere is only moderately
transparent.  This means that the correction for sky radiation is less dependent on the cloud
conditions than it would be in more transparent spectral intervals, as nearly all of the reflected sky
radiation has its origin in the lower troposphere.  The calibration data are provided by using the
views of the black body targets at both the start and end of each scan mirror sequence.

The sampling rates given above are for conditions that lead to no data loss, such as when the
instruments are under covers, have a contaminated scan mirror, having the mirrors cleaned, or
where measurements are contaminated by an operator looking down the field of view to check that
the mirror is clean.  In addition, in light rain the mirror is driven to a ‘safe mode’ position (viewing
the ambient temperature black body calibration target), and when such periods are short the
sequence is resumed without significant data loss.  When such intervals are longer, the instrument
calibration may not be sufficiently stable so that the calibration measurements taken before the
mirror entered safe mode may not be applicable to the measurements taken between leaving safe
mode and the next calibration data, leading to a reduction in accuracy of the SST retrieval.  In the
results presented below we have tried to identify the SST measurements contaminated by any
extraneous effects, but closer examination may reveal reasons for rejecting more data (hopefully
outliers in the current data set), such as those contaminated by spray on the scan mirror.

B.1.4.7      M–AERI–01        vs.         M–AERI–02        SST       retrievals   

Before mounting on the R/V Revelle the calibrations of both M–AERIs were tested by measuring
the temperature of a third black body target at a known temperature.  Both M–AERIs measured the
temperature of this target to an accuracy of <0.03K.

The two instruments have slightly different cycle times, determined by the speed of the moving
mirror in each interferometer, and thus it was impossible to synchronize the two data sets even
when both instruments were using the same scan mirror control sequence, and to compare the skin
SST retrievals the time series from M–AERI–02 was interpolated to the measurement times of
those from M–AERI–01.  Daily averages of the differences in skin SST’s from both instruments
are given in Table 4 together with their standard deviations.  It can be seen that the correspondence
is remarkably good.  These measurements are independent in the sense that each instrument has its
own interval calibration.  This agreement is better than anticipated given the design goals (<0.1K)
and what were believed to be the inherent uncertainties in key components of the instrument (e.g.,
emissivity of black body calibration targets; accuracy of thermistors in the black body targets).



Table 4

M–AERI Skinn SST comparisons
R/V Revelle section, Hawaii to New Zealand
55o incidence angle, λ=7.7µm
M–AERI-2 data interpolated to times of M–AERI-1 measurements
24h data segments

Date – UTC Mean T K Std. Dev. T K
Sept 30 0.016 0.036
Oct 1 0.006 0.038
Oct 2 0.004 0.142
Oct 3 0.035 0.167
Oct 4 0.016 0.068
Oct 5 0.012 0.270
Oct 6 0.018 0.045
Oct 7 0.012 0.056
Oct 9 -0.001 0.069

B.1.4.8     Skin        vs      .        bulk       temperature   

The latitudinal section of surface temperature measured by the ship (bulk) and M–AERI–01 (skin)
is shown in Figure 9, upper panel.  The difference between the skin and bulk temperatures is given
in the lower panel together with a key for the color coding which is for the local time of the
measurement.  It can be seen that in nearly all cases the skin temperature is cooler than the bulk
measurements, as is to be expected.  Those cases where the reverse is true tend to be in the local
afternoons in situations of low wind speed and are indicative of the presence of a diurnal
thermocline which raises the in-situ temperature  just below the sea surface to values much higher
than at the depth of the ship measurement.  Even the presence of a cool skin leaves the skin
temperature warmer than the bulk temperature measured by the ship’s system.  Similar diurnal
effects are to be seen in the data on other days, even in the trade winds’ region although the
amplitude is sufficiently reduced so that the skin-bulk temperature difference does not change sign.
 Nevertheless, there remains a diurnal modulation of the skin-bulk temperature difference with a
peak-to-peak value of 0(0.1K).

B.1.4.9      Wind       speed        dependence   

A scatter-plot of the measured skin temperature difference against measured surface wind speed
(corrected for the ship’s motion) reveals an envelope of points that becomes narrower with
increasing wind speed (Fig. 10).  The color coding in this figure indicates the local sun time of the
measurements, and it can be seen at low wind speeds a widening of the distribution include
positive values during the afternoon.  This is the effect of the generation of a diurnal thermocline in
the top few meters of the ocean, which makes the skin temperature appear to be warmer than the
5m bulk measurements.  In reality, the skin remains cooler than the bulk measurement at a depth of
a few centimeters.  During the night, and for higher wind speeds the skin is about 0.2K  0.2K
cooler than the bulk temperature.

B.1.4.10     Satellite        validation    

At the time of writing this report, no comparisons with satellite data have been made.  The results
of these comparisons will be discussed in subsequent quarterly reports of the project.



B.1.4.11     Conclusion    

The initial conclusions are very positive.  They show the M–AERIs capable of making accurate
skin temperature measurements, and of operating in a shipboard environment in very hot ambient
conditions.  Long (180 ft.) cables were used and, apart from the difficulty of man-handling such
bulky cables on the ship, this did not lead to any obvious loss of quality in the data compared to
those taken with prototype M–AERIs using much shorter cables.

Figure 10.  Wind speed dependence of the skin-bulk temperature difference.

A number of issues have been identified that will receive attention before the use of the M–AERIs
for MODIS validation.  These include:

a) upgrading the CPUs of the system computer so that the speed of SST retrieval is not
CPU limited, but detector noise limited;

 
b) increasing the size of the hard disks on the system computer to ensure no data are lost

at the “start-of-day” procedures when “old” data are deleted to make way for the new
day’s measurements;

 



c) improved weatherproofing and baffles around the aperture to keep the mirror clean by
avoiding spray deposition;

 
d) improved rain and spray detection software for automatic mirror “safe-mode”

operation; and,
 
e) improved software for flagging data that might be contaminated by mirror “safe-mode”

operation and by covering the instrument by tarpaulins.  This will lead to better and
more rapid quality assurance of the data.

B.1.5 CASOTS Workshop

The CASOTS (Combined Action to Study the Ocean's Thermal Skin) group is funded by the
European Community "Framework 4 Environment and Climate Programme," to coordinate study
of the ocean surface thermal skin, with the objectives of improving the knowledge of the physics
of the ocean skin and of understanding how the skin temperature difference influences the
validation of satellite measurements of sea-surface temperature (SST).  A workshop was held in
October 1997 and Dr. Minnett was invited to attend.

The CASOTS group has a WWW page at
http://www.soc.soton.ac.uk/SUDO/RES/CASOTS/index.html

The workshop was the second of the series, the first having been held in Southampton in the UK
in June 1996, and is described at http://www.soc.soton.ac.uk/SUDO/RES/CASOTS/workshop1.html.
One of the main activities at the first workshop was a comparison of the performance of several
infrared radiometers used, or intended for use, to validate satellite measurements of SST.

The objectives of the Second Workshop were:
• Review the improvements in field measurement methodology arising from the first workshop,

additional bilateral visits and fieldwork collaboration.
• Examine the data catalogue and identify gaps in coverage.
• Compare the performance of different predictive models for delta T.
• Plan a program of further study required to enable delta T to be accurately predicted.
• Prepare an advisory paper to the CEO concerning the effect of delta T on the monitoring of

global SST from space.
• Prepare the Workshop Proceedings, which will include recommendations for the further

development of the subject.

The participants at the Second Workshop are given below.

The workshop consisted of a series of sessions which began with a number of presentations that
led into general discussions amongst the participants. The sessions were:

Introduction & Welcome: Ian Robinson & Walter Eifler
Introduction to the Space Applications Institute at JRC, Dr Rudolf Winter, Director of
SAI
Session 1: Keynote Address: Dr. Kristina Katsaros
Session 2: Discussion: The role of SST in climate change and climate monitoring
Session 3: Presentations: Update on recent progress in thermal skin research
Session 4: Discussion: Defining and measuring delta T
Session 5: Presentations and discussion: Ship-borne Radiometry.
Session 6: Discussion: Calibration / validation of satellite SST



Session 7: Discussion: The way forward for skin layer research.
Session 8: Workshop Conclusions

Peter Minnett gave a presentation in Session 3, which included M-AERI measurements from the
Combined Sensor Cruise and from the recently completed sections form Hawaii to New Zealand
on the R/V Roger Revelle.

One of the outcomes from the meeting was a statement reached by the consensus of the participants
on the relevance of the ocean thermal skin to climate studies, air-sea exchanges, and validating
satellite SST retrievals. This is what was agreed upon:

The relevance of the thermal skin of the ocean for climate studies

There is clear evidence in the literature from the past 20 years, confirmed by
recent measurements, that there is a significant difference between the
radiometrically measured skin temperature of the ocean (SSST) and the bulk sea
surface temperature (BSST) as measured typically from ships and buoys. The
magnitude of this difference, Delta T, is typically for the skin to be 0.3 K cooler
than the bulk, but it can vary considerably over the ocean. In conditions of local
diurnal warming SSST can become several K warmer than BSST measured a
few metres below the surface.
This phenomenon should be of concern for climate scientists for a number of
reasons:

1. Sea surface temperature (SST) is used as a parameter for monitoring
climate change. Its increase globally is an indicator of global warming, and
the change in its geographical distribution can be a sensitive indicator of
climate change.

2. SST is a parameter which appears explicitly, and controls heat fluxes and
evaporation rates, in the coupled ocean-atmosphere models used to predict
climate change. Measurements of SST can be used to validate and possibly
to drive such models.

3. SST is required for the parameterisation of air-sea gas fluxes and is
therefore crucial for understanding the processes which control the global
carbon dioxide budget.

Given the importance of SST as a climate parameter, and the size and variability
of Delta T, the distinction between SSST and BSST should not in future be
neglected by climate scientists. The magnitude of the uncertainty resulting from
failing to address the difference between them is too large to be tolerated in the
circumstances outlined above. The following recommendations are therefore
made for future use of SST in the climate context:

1. SSST and BSST should be treated as two distinct variables. For many
purposes, SSST is the most useful and appropriate indicator. It represents
a physically definable property. It is the temperature which drives most of
the air-sea interaction processes. It is also the variable which is directly
measured by earth orbiting satellites. In general SSST is likely to be more
variable spatially and temporally than BSST and contains information
about changes in air-sea interaction processes. However, the historic
climate record is based on BSST and continuity of its recording is
essential. BSST approximates to the ocean's mixed layer temperature and
is therefore a better indicator of the heat stored in the upper ocean, although
it is important to standardise the depth to which the BSST refers.



2. Both BSST and SSST should be monitored independently. BSST must
essentially be obtained by in situ measurements, while SSST is measured
radiometrically from satellites, aircraft or ship-borne radiometers. It is
inappropriate to measure BSST by remote sensing. However, when
sufficiently long overlapping records of BSST and SSST have been
accumulated, it will be possible to explore the relationship between the
two, and thus provide an approximate continuity between satellite-derived
time series of SSST and the historic archive of BSST.

3. From a physical basis, SSST appears to be the most appropriate variable to
use in coupled models of air-sea interaction. It is recommended that
experiments be performed usng high resolution process models which use
SSST rather than BSST, in order to study whether there is a significant
difference in the predicted outcome of such models in comparison with
those using BSST.

4. Although SSST is the most appropriate variable on which to base estimates
of air-sea fluxes, it will not be practicable to do so until new bulk
parameterisations of heat, momentum, and gas fluxes are derived. There is
therefore an urgent need for experiments to derive bulk parameters based
on SSST.

5. If SSST is to be used as the driver for air-sea interaction processes (see (3)
and (4)), there is also a need to examine the effect of cloud cover on SSST
lest the clear-sky requirement for satellite measurements of SSST introduce
a bias.

Another outcome of the workshop was a recognition that there needs to be further comparisons
between the radiometers that are used to study the skin effect and to validate satellite SST
measurements, and plans were made for such a workshop toi take place at the University of Miami
in the spring on 1998. It was also recognized that the black-body targets used in the calibration of
these radiometers should be compared with each other and, if possible, with a standard reference
target provided by a Standards Institute.  Also it was agreed that a workshop should be held to
attempt to coordinate satellite validation exercises by the various groups around the world,
especially given the expactation of several new infrared spacecraft radiometers becoming
operational in the next few years. It was decided that it would be wise to take advantage of the
concentration of scientists active in this field at the Miami Radiometer Workshop, and the
Validation Workshop should be held in conjunction with this. These workshops will take place
form March 2-6 at the Rosenstiel School of Marine and Atmospheric Science of the University of
Miami. The validation Workshop will be held under the auspices of the CEOS Working Group on
Calibration and Validation. Details of these workshops can be found on the WWW page
http://www.rsmas.miami.edu/ir.

B.1.6.1 NOAA Ship Ronald H. Brown

Space has been offered on the NOAA Ship Ronald H. Brown on the forthcoming cruises from
Miami to the Canary Islands and back in January-February 1998.  Two berths will be available on
each cruise.  The first is a non-stop transit and the second will include over 130 oceanographic
stations.  In total these cruises include over six weeks of sea time.  A M–AERI will be installed on
the ship and operate in a continuous mode.  The retrieved M–AERI skin temperatures will be used
to validate the AVHRR Pathfinder atmospheric correction algorithm (a close analogue of the
MODIS SST algorithm), with 1km AVHRR data being captured at the NASA Wallops Island
facility (Western Atlantic) and at a receiving station at the University of La Laguna, Canary Islands
(eastern Atlantic).  Details of the cruise are available at http://www.aoml.noaa.gov/phod/24n

B.1.6.2 CCGC Pierre Espirit Radisson

The Canadian research agency NSERC has funded the scientific voyages of the Canadian ice-



breaking research vessel Pierre Espirit Radisson, (which replaces the CCGC Louis S. St. Laurent)
to the north of Baffin Bay (see earlier reports).  Berths have been made available to Dr. Minnett on
all four of the cruises, beginning late March 1998 and continuing through July, in order to make
M–AERI (and other) measurements.  This will provide the opportunity to collect M–AERI data
over a wide range of Arctic conditions.  These will be used to validate AVHRR sea-surface
temperatures through very dry, cold atmospheres.  AVHRR data will be collected using  satellite
data receiver ont he ship itself.  Plans are being made to mount a smaller expedition to the same
course in summer 1999, which will provide an opportunity to validate MODIS SST retrievals
(Minnett’s participation in these cruises is supported, in part, by another NASA grant – AVHRR
validation – and by NSF- measurements of the surface heat budget).

B.1.6.3 NOAA OACES Cruise

In May-July 1998, the NOAA ship Ronald H. Brown will be used to conduct an observational
program northwest of the Azores in the North Atlantic as part of the Ocean-Atmosphere Carbon
Exchange Study.  Dr. P. Minnett was successful in obtaining NOAA funding to participate in this
cruise.  This will provide a further opportunity to use the M–AERI at sea.  Use will also be made
of the transit cruises between Miami and the Azores.  These data will complement the winter-
season data to be collected in the Atlantic in January and February.

B.1.6.4 USCGC Polar Sea

Confirmation that space will be available for a M–AERI group on the USCGC Polar Sea on the
long transect from Seattle to Antarctica (or at least to the last port before Antarctica) has been given.
 This cruise, in November-December 1998, will provide the first MODIS trans-oceanic validation
opportunity.

B.1.6.5 RV Mirai

Japanese collaborators at JAMSTEC (Japanese Marine Science and Technology Center) have
offered space for M–AERI and ancillary instruments and operators on the R/V Mirai during
summer 1999.  This will be part of the planned US-Japan collaborative research in the warm pool
of the Pacific Ocean.

B.1.6.6 PFS Polarstern

The Alfred-Wegener-Institute for Polar and Ocean Research has approved a proposal by Minnett to
mount a M–AERI and ancillary instruments on their ice-breaking reseasrch vessel “Polarstern” on
the voyage in the Atlantic Ocean from Brenerhaven to Cape Twon in December 1999.  This will
provide another dataset for MODIS validation spanning a wide range of climate regimes,
comparable to that from the Polar Sea in the Pacific Ocean.

B.1.7 Wide Area Networking

Since the last report a second gigaswitch ATM has been added; the two switches are being
interconnected using OC12 (622Mbs) links.  Additional hardware to populate the second switch
and workstation interfaces were acquired.  These changes allow the existing ATM network to be
expanded to cover at-launch requirements.  Work continues with NASA and NSF to connect
RSMAS to the vBBNS (very high speed Broad Band Network System).



C. Investigator Support

July W. Baringer
J. Brown
O. Brown
P. Evans
G. Goni

A. Li
A. Mariano
R. Sikorski
J. Splain

August W. Baringer
J. Brown
O. Brown
P. Evans

G. Goni
A. Li
A. Mariano
R. Sikorski

September W. Baringer
J. Brown
O. Brown
M. Framinan

G. Goni
A. Mariano
R. Sikorski

October W. Baringer
J. Brown
O. Brown
P. Evans
M. Framinan
G. Goni

R. Jones
A. Li
A. Mariano
R. Sikorski
J. Splain

November P. Evans
G. Goni

R. Jones
A. Mariano

December A. Li
A. Mariano
J. Splain

D. Future Activities

D.1 Algorithms

a. Continue to develop and test algorithms on global retrievals
b. Evaluation of global data assimilation statistics for SST fields
c. Participate in research cruises
d. Organize radiometer and validation workshops
e. Continue radiative transfer modeling using RAL code
f. Continue analysis of research cruise data
g. Continue to study near-surface temperature gradients
h. Continue planning of post-launch validation campaigns
i. Validation Plan updates (as needed)
j. EOS Science Plan updates (as needed)
k. Define and implement an extended ATM based network test bed
l. Continued integration of new workstations into algorithm development environment
m. Continued participation in MODIS Team activities and calibration working group

D.2 Investigator support

Continue current efforts.



D.3 AGU Meeting

Dr. Peter Minnett has been invited to present a paper at the Spring meeting of the American
Geophysical Union in May in Boston, in the Special Session on “The Measurement of Sea Surface
Temperature from Satellites and Algorithm Intercomparisons.”  He has also been invited to present
a paper at the 1998 IEEE International Geoscience and Remote Sensing Symposium in Seattle in
July.  The special session is entitled, “Infrared Remote Sensing of the Sea Surface:  measurement
techniques and applications to air–sea interaction.”

E. Problems

No new problems to report.

F. Publications and Presentations
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APPENDIX – Participants at CASOTS Workshop

Duncan Baldwin
Department of Oceanography
Southampton Oceanography Centre
European Way
Southampton
SO14 3ZH
UK
Tel: +44 1703 596470
Fax: +44 1703 593059
d.j.baldwin@soc.soton.ac.uk

Ian Barton
CSIRO Marine Labs
Hobart
Tasmania
Australia
Tel: +61 3 62325481
Fax: +61 3 62325123

Brett Candy
The Met. Office
London Road
Bracknell
Berks
RG12 2SZ
UK
Tel: +44 1344 856876
Fax: =44 1344 854-26
bcandy@meto.gov.uk

Craig Donlon
University of Colorado
CCAR/Aero Engineering
Campus Box 431
Boulder
CO  80309
USA
Tel: +1 303 492 0955
Fax: +1 303 492 2825
cjdn@colorado.edu

Walter Eifler
SAI
CEC-JRC
Ispra
Italy
Tel: +39 337 789326
Fax: +39 337 789648
walter.eifler@jrc.it

Bill Emery
University of Colorado
CCAR/Aero Engineering
Campus Box 431
Boulder
CO  80309
Tel: +1 303 492 8591
Fax: + 1 303 492 2825
emery@frodo.colorado.edu

Lars Fiedler
Max-Planck-Institut für Meteorologie
Bundestrasse 55
20146 Hamburg
Germany
Tel: +49 404 1173209
Fax: +49 404 1173391
fielder@dkrz.de

Andy Harris
The Met. Office
London Road
Bracknell
Berks
RG12 2SZ
UK
Tel: +44 1344 854527
Fax: =44 1344 854412
arharris@meto.gov.uk

Alastair Jenkins
Nansen Environmental Remote Sensing Centre
Edvard Griegsvie 3A
N-5037 Solheimsviken
Bergen
Norway
Tel: +47 55297288
Fax: +47 55200050
Alastair.Jenkins@nrsc.no

Andrew Jessup
Applied Physics Laboratory
University of Washington
1013 NE 40th Street
Seattle
WA  98105-6698
Tel: +1 206 685 2609
Fax: +1 206 543 6785
jessup@apl.washington.edu



Kristina Katsaros
Atlantic Oceanographic and Meteorological Laboratory
NOAA
4301 Rickenbacker Causeway
Miami, FL 33149
USA
Tel: +1-305-361-4300
Fax: +1-305-361-4449
katsaros@aoml.noaa.gov

Simon Keogh
Department of Oceanography
Southampton Oceanography Centre
European Way
Southampton
SO14 3ZH
UK
Tel: +44-1703-596488
Fax: +44-1703-593059
sjk2@soton.ac.uk

Sean Lawrence
EOS
Dept. Physics and Astronomy
University of Leicester
Leicester
UK
Tel: +44-1162-525238
Fax: +44-1162-525262
spl5@le.ac.uk

David Llewellyn-Jones
Earth Observation Science Group
Department of Physics and Astronomy
University of Leicester
Leicester
LE1 7RH
UK
Tel: +44-1162-525238
Fax: +44-1162-525262
dlj1@le.ac.uk

Peter J. Minnett
University of Miami
4600 Rickenbacker Causeway
Miami
USA
Tel: +1-305-361-4014
Fax: +1-305-361-4622
pminnett@rsmas.miami.edu

Ian Ridley
Earth Observation Science Group
Department of Physics and Astronomy
University of Leicester
Leicester
LE1 7RH
UK
Tel: +44-1162-525264
Fax: +44-1162-525262
ikr2@le.ac.uk

Ian Robinson
Department of Oceanography
Southampton Oceanography Centre
European Way
Southampton
SO14 3ZH
UK
Tel: +44-1703-593438
Fax: +44-1703-593039
isr@soc.soton.ac.uk

Maria Elisabetta Schiano
Stazione Oceanografica - CNR
Forte S.Teresa
19036 Pozzuold di Lerici (sp)
Italy
Tel: +39-187-536289
Fax: +39-187-970585
fispvs@est409.santateresa.enea.it

Peter Schlüssel
Meteorologisches Institut
Universität München
Theresienstrasse 37
80333 München
Germany
Tel: +49-89-2394-4210
Fax: +49-89-2394-4381
schluessel@meteo.physik.uni-muenchen.de

Tom Sheasby
Earth Observation Science Group
Department of Physics and Astronomy
University of Leicester
Leicester
LE1 7RH
UK
Tel: +44-1162-525264
Fax: +44-1162-525262
tns1@le.ac.uk



Lucien Wald
Ecole des Mines de Paris
BP207 06904 Sophia Antipolis
France
Tel: +33-93957449
Fax: +33-93957535
wald@cenerg.cma.fr

Brian Ward
Department of Oceanography
University College Galway
Galway
Ireland
Tel: +353-91-524411 x3207
Fax: +353-91-525005
brian.ward@ucg.ie

Neil  Wells
Department of Oceanography
Southampton Oceanography Centre
European Way
Southampton
SO14 3ZH
UK
Tel: +44-1703-592428
Fax: +44-1703-593059
n.c.wells@soc.soton.ac.uk

Gary Wick
CIRES CDC
University of Colorado
Campus Box 449
Boulder
CO 80309
USA
Tel: +1-303-492-6466
Fax: +1-303-492-2468
gaw@cdc.noaa.gov

Ryuso Yokoyama
Department of Computer Science
Faculty of Engineering
Iwate University
4-3-5, Ueda
Morioka, Iwate
Japan
Tel: +81-196-21-6478
Fax: +81-196-21-1170
yokoyama@cis.iwate-u.ac.jp

Chris Zappa
Applied Physics Laboratory
University of Washington
1013 NE 40th. St.
Seattle
WA 98105-6698
USA
Tel: +1-206-685-8226
Fax: +1-206-543-6785
zappa@apl.washington.edu

Albin Zàvody
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX11 0QX
UK
Tel: +44-1235-445815
Fax: +44-1235-445848
albin@atsrsc.rl.ac.uk


